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E L A S T I C A  OF A N  E U L E R  R O D  W I T H  C L A M P E D  ENDS 

V. V. K u z n e t s o v  and  S. V. Levyakov I UDC 539.3 

The stability of the postcritical states of equilibrium of a flexible rod with clamped ends loaded 
by an axial force is analyzed. It is shown that the existing Lagrange elliptic-integral solution 
has bifurcation points and branches of solution that have not been investigated thus far. 

Exact analytical solutions that govern the postcritical bending of rods (Euler elastica) were obtained 
by Lagrange in terms of elliptic integrals [1]. However, the stability of the postcritical states of equilibrium 
has not yet been investigated. Kuznetsov and Levyakov [2] analyzed the stability of a simply supported 
rod and found new bifurcation points and branches of solution. In the present paper, a similar analysis is 
performed for a rod with clamped ends. 

We consider a straight elastic rod of a uniform rectangular cross section with clamped ends. We denote 
the rod length by I and the extensional and bending rigidities by E F  and EI,  respectively. The rod is loaded 
by the axial force P (Fig. 1). We investigate the plane elastica with the use of the numerical algorithm from 
[3], which is applicable to analysis of multiple branching solutions. The ratio of the height of the rod to its 
length was taken to be 2.5.10 -3, which made the axial line practically inextensible. As a numerical analysis 
has shown, the division of the rod into 50 equal finite elements provides high accuracy of the solution for a 
wide range of rod curvatures. 

Figure 1 shows the nonlinear deformation characteristics of the rod (Pcr= 47r2EI/l 2 is the first critical 
load, u is the displacement of the movable support, and w is the mid-span deflection of the rod). The solid 
curves refer to stable states and the dashed curves to unstable states. The points refer to the singular points 
of solution. 

~Ve analyze the results obtained. As the compressive load increases from zero to the value of P --- Per, 
the rod remains rectilinear and stable. The solution bifurcates at the bifurcation point B1. With further 
increase in load, the bent configurations are stable (the curves B1B2 and B1B3 in Fig. 1). These findings are 
well known. However, as the calculations have shown, these curved configurations of the rod are stable only 
up to the point B2 (B3), where the secondary loss of stability occurs for P = 2.1539Pcr. When this value of 
the load is reached, the rod configuration becomes 8-shaped (Fig. 2a). In this case, the second variation of 
the total potential energy of the rod is not positive definite, and. hence, this state of equilibrium is unstable. 

According to the Lagrange solution, the force that brings the rod ends into coincidence is determined 
from the transcendental equation 

2E(Tr/2, k) - F(Te/2, k) = O, P = (4/,'r2)F2(zc/2, k)Pcr, (1) 

in which F(Tr/2, k) and E(7c/2, k) are the complete elliptic integrals of the first and second kinds, respectively, 
and k is the modulus of the elliptic integral. From (1), we find 

k = 0.908908557, P = 2.18337905Pcr. (2) 
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Tile load of the secondary loss of stability, which was determined by the algorithm of [3], differs from 
the value in (2) by 1.3%. The branch of solution B2B4B3B5B2 (see Fig. 1), which passes through the points 
B2 and B3, is a closed curve in the enhanced space of generalized coordinates and load parameter. This 
branch refers to the deformation upon which the 8-shaped configuration of the rod rotates. In the process, 
the strain state at each point of the rod varies cyclically, the potential energy of the rod being constant. 

At the bifurcation points B4 and Bs, the above-described branch intersects the new branch 
D1B4L1L3B6L4L2B5D2, which includes the bifurcation points B4, B.% and B6 and the limit points Li, 
L2, L3, and L4. The configuration of the deformed rod that corresponds to the point B4 is shown in Fig. 2b. 
On this branch, the S-shaped configurations shown in Fig. 2c (the point D1) are stable, and the configurations 
shown in Fig. 2d (the point L3) are unstable. We note that this branch describes the rod deformation that 
corresponds to the development of tile second buckling mode of the rectilinear rod for P = 2.05012Per (the 
bifurcation point B6). 

Thus, in contrast to the Lagrange solution B1B2 (or B1B3) and its smooth continuation, as a series of 
stable states of equilibrium at an increased load, the deformation develops according to the branch B1B2 (or 
B1B3) with a subsequent snap on the branch B4D1 (or B5D2). 
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TABLE 1 

Bifurcation points P/Pcr 

Hi 
B2, B~ 
B4, B5 
Ll, L2 
La, L4 

Bu 

1 
2.1539 

-1.4010 
-1.5132 
2.3153 
2.0512 

0 
1 

1 

0.9347 
0.4451 

0 

w/l 

0 
+0.3927 

0 
0 
0 
0 

When the movable-end displacement and the mid-span deflection are used as the characteristic dis- 
placements, the projections of the singular points B4 and Bs, L1 and L2, and L3 and L4 coincide (see Fig. 
1). The configurations that correspond to the points L2 and L4 are the reflections of the configurations 
corresponding to the points LI and L3, respectively. The configurations that refer to the bifurcation points 
B5 and B4 are the reflections in the vertical axis that passes through the immovable end of the rod. 

Table 1 lists values of the dimensionless parameters that characterize rod deformations at the singular 
points of solution. 

Thus, the stability analysis of the nonlinear solutions, including well-known solutions, has revealed 
new singular points and branches of solution that emanate from these points. 
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